
command shell (version 3.1) September 5, 2017 Page 1

command shell
by Tony Lewis

tlewis@exelana.com

The Perl script provides a command shell to which you can add your own commands. To create your
custom shell, extract the cs.tgz file and run customize.pl. (See the Customization section beginning on
page 38 for instructions.) After customization you will have a functional command shell, with several
built-in commands and one predefined command (that command is ‘test’, which you may choose to
delete).

The latest version is available at http://www.exelana.com/techie/perl/cs.html

Creating your command shell

The customization script will create three files (using a prefix that you specify in Customization step 9):

File Description
xx.pl This is the file that the user will run from the command line.
xx_defs.pl Loaded by xx.pl; this file contains the definitions for your command shell.
xx_impl.pl Loaded by xx.pl; this file contains the implementation of your command shell.

In theory you could combine all this code into a single file, but I recommend that you keep the
definitions and the implementation separate. If your implementation contains a lot of commands, you
might want to break xx_impl.pl into multiple files.

Note that xx.pl is a wrapper that loads cs_main.pl. This allows you to replace the command shell code
with a new version (although you should consult the README file about any compatibility issues).

This documentation corresponds to version 3.1 released on September 5, 2017.

http://www.exelana.com/techie/perl/cs.html�

command shell (version 3.1) September 5, 2017 Page 2

Built-in Commands

The command shell contains several commands to support users of your command shell as well as
commands to support you as the script developer.

User Commands

The following built-in commands are available to users of your command shell.

Command Description
about Display information about the command shell.
cd path Change the working directory.
exit Exit perl, system, or another added mode and return to the main mode
help [topic] Display information about available commands
perl Enter “perl” mode to evaluate Perl expressions
pwd Print the current working directory.
quit Exit the command shell
system Enter “system” mode to enter operating system commands.

Shell Developer Commands

The following built-in commands are available to shell developers.

Command Description
debug [level] Change the debugging level (options: off on 0 1 2 3)

Also "debug flag [level]"
dump [topic] Dump internal information structures; see “help dump”
edit file Edit a file (Note: "defs" or "impl" will open your xx_defs.pl or xx_impl.pl file.
editlib lib Find a system library file.
findlib lib Find a system library; for example “findlib Term::ReadKey”
reload Reload the script (typically after editing one of the source files)
storage file Examine a file created by storeData

command shell (version 3.1) September 5, 2017 Page 3

Signal Processing

The command shell defines signal handlers for the following signals:

Signal Description
CHLD If requested, reloads command shell in a new child process; otherwise exits program.
INT Catches ^C interrupts from the keyboard and sets the variable $int to 1. If your

commands take more than a few seconds to complete, you should monitor $int and
gracefully exit the command. If the user presses ^C five times without the command
responding, the user is presented with the option of reloading the program.

__WARN__ Adds stack dump to warning messages.
WINCH Catches changes to the size of the terminal and updates internal variables.

command shell (version 3.1) September 5, 2017 Page 4

Debugger

The command shell defines a debugger that can be invoked inline allowing you to examine or change
variables and to execute subroutines.

To call the debugger, insert one of these statements:

return if debugger(sub { return eval($_[0]) });
map{next if m/next/;last if m/last/;return if m/return/}
 debugger(sub{return eval($_[0])});

The first statement will return from the calling subroutine if you enter "return". The second statement
also handles next and last so that you can manipulate a loop.

Commands available within the debugger:

Command Description
exit Exit the debugger and resume normal processing
last Exit the debugger and instruct caller to process a last statement
next Exit the debugger and instruct caller to process a next statement
return Exit the debugger and instruct caller to process a return statement
skip [n] Skip the next n invocations of the debugger
stack Print the call stack

Note: The main loop of the command shell will reset the skip count to zero at the start of a command.

The debugger can be invoked during any call to getReply (including calls to getNumber, getNumberList,
and yesNo) by entering ":debugger" as the response.

command shell (version 3.1) September 5, 2017 Page 5

Initializing and Configuring the Command Shell

Before the first command can be processed, the command shell must be initialized and configured. This
processing is setup in the xx_defs.pl source file by the customization script (see Customization on page
38), but you can modify and extend the configuration.

initHelp

The first initialization call that your code must make is to initHelp, which is described on page Error!
Bookmark not defined.. This call is created by the Customization script (steps 1 through 4); see page
38.

addAbout

Add a description of your customized command shell to the about command using addAbout, which is
described on page 17. If this routine is called multiple times, the output is concatenated on subsequent
lines of the output of the about command.

This call is created by the Customization script (steps 10 through 13); see page 38.

addHelpGroup

Add a new help group to the command shell using addHelpGroup, which is described on page 19. This
call is created by the Customization script (step 5); see page 38.

addHelp

You can add additional help text to a help group using addHelp, which is described on page 19. Note
that help lines are displayed in the order they are added. If you want the help text to begin with an
explanation followed by the commands in the group, add the explanation before calling addCommand.

setHistory

Set the file path for storage of command history, which is described on page 32. This call is created by
the Customization script (step 6); see page 38.

command shell (version 3.1) September 5, 2017 Page 6

Modes of Operation

The command shell supports several modes of operation. When the program is running in a specific
mode, the default action is for all commands to be processed in that mode. To execute a single command
in another mode, the user will add the mode prefix to the command.

Three modes are implemented by the main script:

Mode Prefix Description
main This mode of operation to which you will add your own commands (set in

Customization steps 7 and 8)
system ! Executes operating system commands and displays the output
perl p! Evaluates Perl expressions

Four additional optional modes are implemented by support routines (described below):

Mode Prefix Description
cgi c! Execute commands on a remote server (see CGI Mode below)
db d! Query a MySQL database (see Database Support below)
network n! Process network commands (see Network Support below)
xml x! Explore XML content (see XML Support below)

For example, from the main mode:

Mode Description
test will execute your ‘test’ command.
p!hex("4d") calls the Perl hex function and prints the result: 77
perl will switch into perl mode where Perl commands can be entered without the p! prefix.
exit will return to the main mode from perl mode.

addMode

To create additional modes, call the addMode function, which is described on page 19.

command shell (version 3.1) September 5, 2017 Page 7

Adding Commands and Aliases

The user interacts with the program by entering commands. There are predefined commands for each
mode name, each mode prefix, and several internal commands (such as debug and help).

You can add commands to your custom shell that will be executed in any mode that you have defined.
The command shell will process user input, detect your command, and call a subroutine that you define
with any arguments that the user supplies. If the command cannot be parsed, the error routine for the
mode will be called with the user’s input.

Any command can have one or more aliases, which are created by calling addAlias.

You can specify positional arguments and switches for the command. Positional arguments must appear
in the order defined although switches may be interspersed with the positional arguments.

addCommand

To add a command, call the addCommand function, which is described on page 17.

addAlias

To add an alias for a command, call the addAlias function, which is described on page 17.

setOptionalUndef

To change the default behavior of optional arguments, call setOptionalUndef, which is describe on page
33.

command shell (version 3.1) September 5, 2017 Page 8

Implementing Commands

You will implement your commands in the xx_impl.pl file, which initially contains the following
routines that you may use to customize the behavior of the command shell:

Routine Description
localInit The command shell calls this routine before the user’s first command;

put any initialization code here. This is a good place to call loadData or
loadNamedData to restore any persistent data. If you plan to define any
debug flags, you should call addDebugFlag from localInit.

localExit The command shell calls this routine before the program is exited or
restarted; put any initialization code here. This is a good place to call
storeData or storeNamedData to save any persistent data.

localEditor(path,editor) The command shell calls this routine before choosing an editor. This
routine can change $$path to point to a new executable and $$editor to
be the name of the chosen executable. Note that the user can configure
the editor by setting the environment variable EDITOR.

localFileToEdit(path) The command shell calls this routine before editing a file (in an external
editor). The choice of editor is configured by the user. This routine can
change $$path to point to a new location. For example, it might look for
the file by name in several folders and point $$path to the path of the
file in one of those folders.

localPreInput(input) The command shell calls this routine before processing user input. You
can perform internationalization, alias substitution, etc. here. Update
$$input with the string that the shell should process. Set $$input to the
null string to prevent the main loop from taking further action on it.

localPostInput(input) The command shell calls this routine after processing user input. You
can override the quit and reload commands by changing the value of
$quit to 0. Obviously, you should only do this if the user concurs; for
example:

$quit = yesNo("You changed your input file without saving. Are you
sure you want to quit? ");

Commands

For each command that you have added via addCommand, you must provide a subroutine to implement
that command. Note that the subroutine will receive zero or more arguments based on the command
syntax provided to addCommand, which is described on page 17.

Debugging

Note that while it is generally good form to hide your variables using “my”, if you leave them exposed,
you can view and manipulate them using the built-in Perl mode.

command shell (version 3.1) September 5, 2017 Page 9

CGI Mode

To include support for CGI requests to your command shell, add this line to xx_impl.pl:

require "cs_cgi.pl";

You must call cgiInit from your localInit routine and call cgiExit from your localExit routine.

CGI mode and the c! prefix allow you to execute system commands in the same environment as a
remote system executes CGI scripts. It is derived from cgi-shell by Michael Pradel.

To use CGI mode, the three files in the server directory must be installed on the remote server in a
directory where CGI commands can be executed. The files must have execute permission. Enable CGI
mode in the command shell with a call to addCGI, which is described on page 17.

The addCGI routine can be called multiple times for different sites.

User Commands

This file will add cgi mode with the following built-in commands available to users of your command
shell.

Command Description
get get file [dest] [--replace] [--gzip]

Get <file> from the remote site into <dest> (or current local working directory)
 --replace will replace <dest> file if it exists
 --gzip will cause the file to be ZIP'ped before transfer

log Show the CGI log.
put put file [dest] [--replace] [--gzip]

Put <file> to the remote site into <dest> (or current remote working directory)
 --replace will replace <dest> file if it exists
 --gzip will cause the file to be ZIP'ped before transfer

select select [site]

Select the current <site> (or display the current site if none); display all if '*'

All other commands are passed to the server for processing.

command shell (version 3.1) September 5, 2017 Page 10

Security

The CGI interface uses basic authentication. The file _htaccess in the server directory contains the
following example Apache configuration directives to require a user name and password to access the
server:

<FilesMatch "^(cgi-shell-server|getFile|putFile)\.cgi$">
 AuthType Basic
 AuthName "CGI-Shell"
 AuthUserFile "/home/public_html/cgi-bin/.cgishell"
 require valid-user
</FilesMatch>

You can copy these directives into an existing .htaccess file or simply rename the _htaccess file that is
provided and then change the path for the AuthUserFile to match your server directory structure.

Support Routines

This file defines the following support routines:

CGI Interface
addCGI, cgiConnect, cgiExecute, cgiGetFile, cgiPutFile

These routines are further described in the Support Routines section beginning on page 16.

command shell (version 3.1) September 5, 2017 Page 11

Database Support

To include support for database requests to your command shell, add this line to xx_impl.pl:

require "cs_db.pl";

You must call dbInit from your localInit routine and call dbExit from your localExit routine.

NOTE: The current implementation only supports access to a MySQL database via MAMP on
Macintosh OS X.

User Commands

This file will add db mode with the following built-in commands available to users of your command
shell.

Command Description
info Prints general information about the currently open database
open open database [user] [password]

Opens the <database> with permissions assigned to <user>
query query sql

Executes SQL query and shows results
table table name [--dump]

Lists fields or dumps contents of the table <name>
tables Lists tables in the database

Support Routines

This file defines the following support routines:

Database
dbDelete, dbDo, dbFetch1Hash, dbFetchArray, dbFetchHash, dbInsertRow,
dbIsOpen, dbIsRunning, dbOpen, dbPseudoField, dbQuote, dbSelect,
dbSelectHash, dbShowQueryResults, dbTableHash, dbUpdateHashes

These routines are further described in the Support Routines section beginning on page 16.

command shell (version 3.1) September 5, 2017 Page 12

Examples

The examples that follow query the employees sample database, which can be downloaded from
https://dev.mysql.com/doc/employee/en/

The following code will open the database employees, search the table employees for all rows where the
field last_name begins with “Zh”, and the extract a hash with all fields for the first row in that result
(retrieved using the key emp_no).

dbOpen("employees","user","pw")
@res = dbFetchHash(dbSelect(["emp_no"],"employees",
 ["last_name","REGEXP",qr/^Zh/],"emp_no"));
%employee = dbFetch1Hash(dbSelect("*","employees",
 [["emp_no","=",$res[0]->{emp_no}]]));

The following code will search the table dept_emp for all rows where the field dep_no matches is
“d005”.

@res = dbFetchHash(dbSelect("emp_no","dept_emp",
 ["dept_no","=","d005"],"emp_no"));

The following code constructs an empty hash for an entry in the table employees, sets the field
last_name to “Zhiwei”, and then retrieves all rows where the last name matches that value.

%employee = dbTableHash("employees");
$employee{last_name} = "Zhiwei";
@res = dbFetchHash(dbSelectHash("employees",\%employee));

The following code changes the gender of emp_no 99999 to “F”.

%employee = dbFetch1Hash(dbSelect("*","employees",["emp_no","=","99999"]));
%setEmployee = %employee;
$setEmployee{gender} = "F";
dbUpdateHashes("employees","emp_no",\%employee,\%setEmployee);

The following code adds a row to the table employees.

%employee = dbTableHash("employees");
$employee{emp_no} = "999999";
$employee{birth_date} = "1940-04-04";
$employee{first_name} = "Tony";
$employee{last_name} = "Lewis";
$employee{gender} = "M";
$employee{hire_date} = "2017-08-16";
dbInsertRow("employees",\%employee);

The following code deletes that just inserted row from the table employees.

dbDo(dbDelete("employees",["emp_no","=","999999"]));

https://dev.mysql.com/doc/employee/en/�

command shell (version 3.1) September 5, 2017 Page 13

Network Support

To include support for HTTP requests to your command shell, add this line to xx_impl.pl:

require "cs_network.pl";

Note that cs_network.pl uses my NetRequests.pm module. You will find a copy of the latest version of
this module in the lib subdirectory of the command shell directory.

You must call networkInit from your localInit routine and call networkExit from your localExit routine.
Note that the networkInit call can be used to initialize a number of networking parameters such as the
user agent.

User Commands

This file will add network mode with the following built-in commands available to users of your
command shell.

Command Description
get get url [file]

Retrieve a url and optionally store the results in file.
head head url

Retrieve headers for a url.
lookdown lookdown tag [attributes]

Look through the last retrieved web page for nodes with matching content.
select select #

Select a node for further processing.
ping ping site

Check connectivity for site.
top Reset the search to the topmost node of the web page.
view view #

View the indicated node.

The following built-in debugging commands are also available.

Command Description
cookie Displays the cookie jar.
net net save path [--headers] [--full]

Displays information about the last response or saves the contents to a file.

command shell (version 3.1) September 5, 2017 Page 14

Support Routines

This file defines the following support routines:

HTML Content
html2text, htmlGetSelected, htmlParse, htmlParseFile, htmlTag, htmlTagClass,
htmlTagId

HTTP Requests
httpAddHeader, httpGet, httpHead, httpPost, httpPostContent, httpSetCookie,
relativeURL, resp

These routines are further described in the Support Routines section beginning on page 16.

Examples

The following code will retrieve a web page, parse the content, and extract all the anchors.

my $RESP = htmlGet("http://www.mysite.com/index.html")
my $tree = htmlParse($RESP)
my @a = htmlTag($tree, "a");

The following code will retrieve a web page, parse the content, find a <div> with a class of "mainBody"
and then within that find a <table> with an id of "results".

my $RESP = htmlGet("http://www.mysite.com/index.html")
my $div = htmlTagClass($RESP, "div", "mainBody")
my $table = htmlTagId($div, "table", "results")

command shell (version 3.1) September 5, 2017 Page 15

XML Support

To include support for XML support to your command shell, add this line to xx_impl.pl:

require "cs_xml.pl";

You must call xmlInit from your localInit routine and call xmlExit from your localExit routine.

User Commands

This file will add xml mode with the following built-in commands available to users of your command
shell to explore XML content.

Command Description
open open path

Reads the file path for processing.
child child tag [n]

Descends to the nth instance of tag.
doc Displays the document type
dump Dumps the XML structure
info Displays information about an open XML file
node Displays the type, attributes and children of the current node
parent Ascends to the parent node
pop Pops the top of the stack as the current node
push Pushes the current node onto the top of the stack
shift Shifts the current node onto the bottom of the stack
text Displays the text of the current node
top Ascends to the top of the XML document
unshift Unshifts the bottom of the stack as the current node

Example

mode xml
open test.xml
child document
child body
child p 3
dump
push
top
node
pop
child r
dump

command shell (version 3.1) September 5, 2017 Page 16

Support Routines and Variables

The command shell provides a number of variables and routines that are intended to make life easier for
a shell developer.

Support Routines by Category

CGI Interface (requires "cs_cgi.pl")
addCGI, cgiConnect, cgiExecute, cgiGetFile, cgiPutFile

Data Management
loadData, loadNamedData, storeData, storeNamedData

Data Processing
compare, copyArray, copyHash, csv, csvInit, exportData, exportStorage,
exportToFile, importData, importFromFile, makeCopy

Database (requires "cs_db.pl")
dbDelete, dbDo, dbFetch1Hash, dbFetchArray, dbFetchHash, dbInsertRow,
dbIsOpen, dbIsRunning, dbOpen, dbPseudoField, dbQuote, dbSelect,
dbSelectHash, dbShowQueryResults, dbTableHash, dbUpdateHashes

Date/Time Processing
fmtDate, timeDiff

Debugging
addDebugFlag, array, debug, debugColor, debugger, dumpVar, dumpVarValue,
first, getDebugFlag, getMainMode, resp, setDebugFlag

Error Messages
abort, complain, complainTrace, unknownCommand

File / Directory Processing
doDir, getFileList, getHome, getPath, getWD, pathFull, pathToSystem

Formatted Output
chopTable, comma, pagedFile, pagedOutput, pagedTable, showTable

HTML Content (requires "cs_network.pl")
html2text, htmlGetSelected, htmlParse, htmlParseFile, htmlTag, htmlTagClass,
htmlTagId

HTTP Requests (requires "cs_network.pl")
httpAddHeader, httpGet, httpHead, httpPost, httpPostContent, httpSetCookie,
relativeURL

Information
codeToFile, codeToLocation, codeToName, collectCode, getOS, getTermHeight,
getTermWidth, toc

Library Management
findLibrary, loadLibrary

Numeric Processing
max, min

Shell Command
addAbout, addAlias, addCommand, addHelp, addHelpGroup, addMode, initHelp,
setHistory, setOptionalUndef

String Processing
displayLength, safeString, safeSubstr, singPlural, sortAlpha, sortAlphaIC,
testString, trueLength, wrapLine, wrapText

command shell (version 3.1) September 5, 2017 Page 17

Support Routines
cgiExit, cgiInit, dbExit, dbInit, networkExit, networkInit, xmlExit, xmlInit

User Input
getNumber, getNumberList, getReply, getReplyInt, yesNo

Support Routines in Alphabetical Order

abort abort text, …

Prints text in red on STDERR and exits the program.

addAbout addAbout text

Adds a description of the command shell.

Note: This call is automatically created by the customization script.

addAlias addAlias command, aliases, mode

Adds aliases for a command. The comma separated list of aliases can apply to a
single mode or every mode by specifying "*". Example:

addAlias("quit","q,bye,exit","*");

addCGI addCGI name, url, user, password, wd, [alias]

Creates a CGI connection for server name, where url implements cgi-shell on
the server, user and password are the authentication values to connect to the
server, wd is the initial working directory on the server, and alias is a file that
contains aliases for the CGI environment.

If user is undefined authentication will be disabled. Otherwise, if password is
the null string the user will be prompted to enter the password when the
connection is activated.

The current implementation of alias processing does not include argument
substitution.

addCommand addCommand name, syntax, function, [helpGroup, helpSyntax,
helpText, mode, [helpExtra]]

Adds a command with name and syntax to invoke function from mode (or the
most recently added mode); a mode of "*" will make the command available in
every mode. If specified, help for the command will be added to helpGroup with
the specified helpSyntax and helpText. Additional lines of help text can be
specified with helpExtra. Examples:

addCommand("spaz","Ss",\&cmdSpaz);

adds the spaz command, which takes one or two strings as input and calls the
cmdSpaz function with two arguments. This command does not appear in the
help text.

command shell (version 3.1) September 5, 2017 Page 18

addCommand("spaz","Ss",\&cmdSpaz,"main",
 "spaz foo [bar]",
 "Displays <foo> information for <bar> (or all)");

adds the same command with help text added to the “main” help group.

Syntax

The syntax argument consists of the concatenation of zero or more short strings
(either a single letter or "-" followed by a single letter); in these strings, the
letters indicate the data type of the argument and the case indicates whether the
argument is required or optional. Possible values are:

Value Description
p Command is a prefix and everything following the prefix is a single

argument (must appear alone in the syntax)
Positional arguments
F Required file path (may not appear after any optional arguments)
I Required integer (may not appear after any optional arguments)
S Required string (may not appear after any optional arguments)
f Optional file path
i Optional integer
s Optional string
* Unclaimed text (must appear after all positional arguments)
Switches
-b, -B optional boolean switch defaulting to 0 (for -b) or 1 (for -B).

User negates -B by using --no-SWITCH (see Example syntax #2)
-X where X is one of [iIsS]; optional switch followed by a string or integer

If any switches appear, they are separated from the syntax string and each other
by colons. Arguments are passed to the implementing function in the order they
are defined in the syntax.

If the command accepts optional integers or strings, the variables will be set to 0
or the null string if the user does not specify a value. To change this behavior
globally and have the variables set to undef instead, call setOptionalUndef(1) or
to change the behavior for just this command, prepend "undef," to the syntax
argument . For example: "undef,Ss".

If the command accepts unclaimed text, anything that does not match the syntax
will be accumulated into an array of strings that is passed into this argument.

Example syntax # 1
Sss-b-I:--silent:--wait

indicates that the command has three positional arguments and two switches
where --silent is a boolean (the argument changes from 0 to 1 when specified)
and --wait must be followed by an integer. The routine would be called with five
arguments and might be implemented as:

command shell (version 3.1) September 5, 2017 Page 19

sub cmdFoo
{
 my ($path, $to, $type, $silent, $wait) = @_;
 # code to implement the command
}

If the user input was "foo /path/to/file", the function would be called as:
cmdFoo("/path/to/file", "", "", 0, 0)

If the user input was "foo /path/to/file --silent newFile --wait 60", the function
would be called as:

cmdFoo("/path/to/file", "newFile", "", 1, 60)

Example syntax # 2
Is-b-B:--silent:--wrap

indicates that the command has two positional arguments (a required integer and
an optional string) plus a switch named –silent. If this were for your test
command, then any of the following would be considered valid inputs:

test 1
test 1 two
test --silent 1 --no-wrap
test --silent 1 two
test 1 --silent two
test 1 two –silent --no-wrap

but the following would be considered invalid inputs:
test two
test two 1
test --quiet 1

addHelp addHelp group, command, text

Adds additional help text to a help group. Note that help lines are displayed in
the order they are added. If you want the help text to begin with an explanation
followed by the commands in the group, add the explanation before calling
addCommand.

If command and text are both blank, an empty line is added; otherwise, if
command is empty, the text will span the entire line.

addHelpGroup addHelpGroup mode

Adds a help group for mode.

Note: The help group is automatically created by addMode.

addMode addMode name, prefix, errorRoutine, help, prefixCommand,
prefixHelp

Adds the mode name, which can be invoked from another mode using the prefix
followed by "!". Undefined commands will invoke the errorRoutine (for

command shell (version 3.1) September 5, 2017 Page 20

example, &unknownCommand). This automatically adds a help group and a
command to enter the mode. The help text will be display for the name
command. The prefixCommand and prefixHelp will be display for the command
prefix.

Example:
addMode("main", "m!", \&unknownCommand,
 "Process in main mode","m!command",
 "Execute a main <command>");

produces the following help output:
m!command Execute a main <command>
main Process in main mode

Note: This call is automatically created by the customization script for the main
mode of your command shell.

addDebugFlag addDebugFlag flag, value

Adds a debug flag and sets its default value.

array array \@array
array @array

Prints contents of array truncated to the width of the terminal.

cgiConnect cgiConnect name, password

Connects to name with password. If the password is not supplied, the user will
be prompted to enter it when the site is accessed.

cgiExecute cgiExecute command, silent

Executes command on the remote server and return the results. The results will
also be displayed on the terminal unless silent is specified.

cgiExit cgiExit

Prepares the CGI support routines for exiting the command shell.

cgiGetFile cgiGetFile source, [destination], [chmod], [replace], [gzip],
[silent]

Copies the file source on the server to destination. The file permissions will be
set to chmod if specified. The destination file will be replaced if replace is
specified. The file will be compressed on the server and decompressed locally if
gzip is specified. Output will be suppressed if silent is specified.

command shell (version 3.1) September 5, 2017 Page 21

cgiInit cgiInit

Initializes the CGI support routines.

cgiPutFile cgiPutFile source, [destination], [chmod], [replace], [gzip],
[silent]

Copies the local file source to the server as destination. The file permissions will
be set to chmod if specified. The destination file will be replaced if replace is
specified. The file will be compressed locally and decompressed on the server if
gzip is specified. Output will be suppressed if silent is specified.

chopTable chopTable rows

Formats and displays a table (see showTable) with output lines chopped to the
terminal width.

codeToFile codeToFile code

Returns defining file for the referenced code.

codeToLocation codeToLocation code

Returns "line # of <file>" for the first executable line of the referenced code.

codeToName codeToName code

Returns the subroutine name of the referenced code.

collectCode collectCode \%HASH, [ref, [prefix]]

Collects information about code from the symbol table into the hash. The key to
the hash is the code name and the value is a hash reference that contains file and
line. Examples:

collectCode(\%CODE);
collectCode(\%CODE,"Term::");
collectCode(\%CODE,\%Term::,"Term::");
map { push @out, "$_\t$CODE{$_}->{line}\t$CODE{$_}->{file}" }
 sortAlpha(keys %CODE);

comma comma value

Returns comma notated value (e.g., comma(1234) returns “1,234”).

compare compare \@A, \@B
compare \%A, \%B

Compares two objects and returns 1 if they have identical contents.

complain complain text, …

Prints text in red on STDERR.

complainTrace complainTrace text, …

Prints text in red followed by a stack trace.

command shell (version 3.1) September 5, 2017 Page 22

copyArray copyArray \@array

Returns a reference to a safe copy of the array. Any references to data in the
copy will point to an object of the same type and value, but changes in the copy
will not affect the original.

copyHash copyHash \%HASH

Returns a reference to a safe copy of the hash. Any references to data in the
copy will point to an object of the same type and value, but changes in the copy
will not affect the original.

csv csv $CSV

Returns a HASH reference for the next line of data (or undef if complete).
Example:

my $CSV = csvInit($path);
my @out;
push @out, join("\t",@{$CSV->{fields}});
while (my $DATA = csv($CSV))
{
 push @out,
 join("\t", map { $DATA->{$_} }@{$CSV->{fields}});
}
showTable(@out);

csvInit csv path
csv \@lines

Initializes CSV processing for either a file or an array of data returning a HASH
reference to be passed to csv. The key/value pairs in the HASH are:

 fields An array of the fields in the CSV data

 done A boolean value that is true once all data has been processed.

dbDelete dbDelete table, [where]

Constructs a DELETE statement to delete rows from table according to where
conditions. WARNING: If where is not included, the resulting DELETE
statement will delete all rows from table.

Pass the resulting statement to dbDo to execute it.

dbDo dbDo sql

Processes sql statement and returns true if successful.

dbExit dbExit

Prepares the database support routines for exiting the command shell.

dbFetch1Hash dbFetch1Hash sql

Processes sql statement and returns a hash corresponding to the first result.

command shell (version 3.1) September 5, 2017 Page 23

dbFetchArray dbFetchArray sql

Processes sql statement and returns an array of the results.

dbFetchHash dbFetchHash sql

Processes sql statement and returns an array of hashes of the results.

dbInit dbInit

Initializes the database support routines.

dbInsertRow dbInsertRow table, \%HASH

Inserts a row into table using the values in the hash. Note that dbTableHash can
be used to create an empty hash corresponding to the fields of table.

dbIsOpen dbIsOpen name

Returns true if the database name is open.

dbIsRunning dbIsRunning

Returns true if the MySQL server is running.

dbOpen dbOpen database, [user], [password]

Opens the database with permissions assigned to user.

dbPseudoField dbPseudoField table, field, key, type, default, null

Defines a pseudo field that is added to hashes for the table that has the name
field, and the specified type, and default value. The field may be null if null is
"YES". Note that the field is not set automatically when values are fetched from
the database. Example:

dbPseudoField("library","dvd_title","","varchar(255)",
 undef,"YES");
map {
 my $title = $_->{title};
 my %library = dbTableHash("library");
 $library{dvd_id} = $_->{id};
 my @in_library = dbFetchHash(dbSelectHash("library",
 \%library));
 map { $_->{dvd_title} = $title } @in_library;
} @dvd;

dbQuote dbQuote value

Quotes value so that it can be used in a SQL statement.

dbSelect dbSelect [fields], table, [where], [order]

Constructs a SELECT statement to retrieve fields from table according to where
conditions sorted by order.

command shell (version 3.1) September 5, 2017 Page 24

If where is specified, a WHERE clause will be included; where must either be
an array of three elements or an array of arrays of three elements each. The three
elements are field name, comparison operator, and value. Examples of the
comparison operator are "<", "=", and "REGEXP". The value element may be a
regular expression.

Pass the resulting statement to dbFetch1Hash, dbFetchArray, or dbFetchHash.

dbSelectHash dbSelectHash table, \%HASH

Constructs a SELECT statement to retrieve rows of table that match the values
in the hash. Note that dbTableHash can be used to create an empty hash
corresponding to the fields of table.

Pass the resulting statement to dbFetch1Hash, dbFetchArray, or dbFetchHash.

dbShowQueryResults dbShowQueryResults [table], result

Prints the values of all rows that appear in the result.

dbTableHash dbTableHash table

Returns a hash containing all the fields of the table set to default values.

dbUpdateHashes dbUpdateHashes table, key, \%OLD, \%NEW

Updates a row in table where the primary key matches the value in the OLD
hash. Any fields in the NEW hash that do not match the OLD hash are updated.

debug debug text, …

Prints debugging output to the terminal. If the text is not already colorized, color
will be added based on the source file of the calling routine. (See debugColor.)

debugColor debugColor color, [source]

Sets the debugging color for the specified source file (or the caller’s source file
if none.) Example:

debugColor("blue",codeToFile(\&NetRequests::new));

debugger debugger evaluator

Invokes the debugger (see page 3) with an evaluator to provide access to locally-
scoped variables.

displayLength displayLength text

Returns the number of characters that will be displayed on the terminal if the
string is printed (excluding any colorizing characters). Example:

displayLength("$COLOR{blue}abcd$COLOR{reset}")

returns 4.

command shell (version 3.1) September 5, 2017 Page 25

doDir doDir dir, walk, routine
doDir dir, walk, [rules]

Traverses a directory and takes designated actions on appropriate objects.
Returns the number of items on which action was taken. Emits an error message
and returns undef if the rules cannot be successfully parsed.

Rules select the items to be processed and specify the actions to be performed on
those items:

dir alternative to positional path to the directory
walk alternative to the positional walk flag
accept if any accept conditions are found, this rule is applied
reject … unless any reject condition is found
run routine to be invoked to process the item
descend routine to be invoked when descending into a subdirectory
ascend routine to be invoked when ascending from a subdirectory
data additional data to be passed to the run, descend, and ascend

routines

Accept and reject conditions are either regular expressions or strings that are
some combination of the characters "f", "l", and "d" for files, links, and
directories respectively.

The ascend, descend, and run routines will be invoked as follows:
routineToCall($root,$relPathToItem,@data)

where $root is the path passed to doDir and $relPathToItem is the relative path
to the individual item. The full path for each item is "$root/$relPathToItem".

Examples

Print the name of each file, link, and directory in the current directory:
doDir(".",0,sub { print join("/",@_),"\n" })

Print the name of each file in the current directory and all subdirectories:
doDir(".",1,
 [accept => "f",
 run => sub { print "file: ",join("/",@_),"\n" }])

Print the name of each file in the current directory and all subdirectories:
doDir(".",1,
 [reject => "dl",
 run => sub { print "file: ",join("/",@_),"\n" }])

command shell (version 3.1) September 5, 2017 Page 26

Run &processText on all *.txt files that do not begin with "foo":
doDir(dir => ".",
 walk => 1,
 accept => qr/\.txt$/,
 reject => qr/^foo/,
 run => \&processText,
 data => \%TEXT)

Print the names of *.txt and *.pl files:
doDir(dir => ".",
 walk => 1,
 [accept => qr/\.txt$/,
 run => sub { print "Text: ",join("/",@_),"\n" }],
 [accept => qr/\.pl$/,
 run => sub { print "Perl: ",join("/",@_),"\n" }])

Collect all sub-directories into @dirs array:
doDir(dir => $wd,
 walk => 1,
 [descend => sub { push @dirs, join("/",@_) }]);

dumpVar dumpVar var, [descend]

Prints contents of var. If descend is true then the nested contents will also be
printed.

dumpVarValue dumpVarValue var

Prints value of var.

exportData exportData filehandle, label, data

Exports data to an open file. Example:
exportData($fh,"\%HASH",\%HASH)

The export routines provide an operating system neutral mechanism to move
data between machines.

exportStorage exportStorage storage, filename

Exports data from storage to filename. Example:
exportStorage("/path/to/storage","/path/to/file")

exportToFile exportToFile filename, label, data

Exports data to filename. Example:
exportToFile("/path/to/file","\@array",\@array)

If filename has a .tgz extension, the data will be written to a temporary file with
an extension of .exp and then that file will be compressed to the requested name.
For example, if the path is "foo.tgz", the data will first be written to "foo.exp"
and that file will be compressed to "foo.tgz".

command shell (version 3.1) September 5, 2017 Page 27

findLibrary findLibrary name

Returns an array of paths to a system library.

first first %HASH
first \%HASH

Prints contents of the first key/value pair of HASH.

fmtDate fmtDate format, tm, [gmt]

Formats the number of non-leap seconds since January 1, 1970 into a string
(using local time unless gmt is non-zero). Example:

fmtDate("yyyy-dd-mm",time());

Format strings:
am either "am" or "pm"
AM either "AM" or "PM"
d single digit day: 1
dd two digit day: 01
ddd short weekday: Mon
dddd long weekday: Monday
h single digit 24-hour clock hour: 1
hh two digit 24-hour clock hour: 01
hhh single digit 12-hour clock hour: 1

m single digit month: 1
mm two digit month: 01
mmm short month name: Jan
mmmm long month name: January
n single digit minute: 1
nn two digit minute: 01
s single digit second: 1
ss two digit second: 01
yy two digit year: 01
yyyy four digit year: 2001

getDebugFlag getDebugFlag flag

Returns the current setting for the named debug flag.

getFileList getFileList [directory,] match

Returns an array of files that match specified criteria from a directory.
Examples:

getFileList("*.pl")
getFileList("images/*.jpg")
getFileList("images","*.jpg")
getFileList("images",qr/\.(?:bmp|gif|jpeg|jpg|png)$/i)

getHome getHome

Returns the user’s home directory.

getMainMode getMainMode

Return the name of the main mode.

getNumber getNumber prompt, low, high

Prompts the user for input and returns the result, which will be a number
between low and high inclusive, or undef if the user did not supply a response.

command shell (version 3.1) September 5, 2017 Page 28

getNumberList getNumberList prompt, low, high

Prompts the user for input and returns the result, which will be a list of numbers
between low and high inclusive, or undef if the user did not supply a response.

getOS getOS

Returns a string indicating the operating system (one of cygwin, macosx, unix,
or windows).

getPath getPath path

Returns the full path for a relative path; recognizes "~" as the user’s home
directory. Example:

getPath("~/.bash_profile")

getReply getReply prompt, [allowed, [password]]

Prompts the user for input, compares that input against what is allowed, and
returns a valid result or undef if the user did not supply a response. If password
is specified, the user’s input is not echoed to the terminal.

The allowed string consists of a series of valid responses separated by
semicolons. A response can map multiple user inputs onto a single return value
by including the return value, an equal sign, and comma-separated alternatives.
A default response is indicated by a leading "!". The following are three
alternatives for a yes/no question:

"yes;no"
"yes=yes,y;no=no,n"
"yes=yes,y;!no=no,n"

The first alternative accepts only “yes” or “no” and returns undef if the user does
not enter anything. The second alternative accepts either “yes” or “y” for “yes”
and “no” or “n” for “no” and returns undef if the user does not enter anything.
The third alternative is like the second except that it will return “no” if the user
does not enter anything.

The debugger can be invoked during any call to getReply (including calls to
getNumber, getNumberList, and yesNo) by entering ":debugger" as the
response.

getReplyInt getReplyInt

Returns a boolean value indicating if the user interrupted the most recent call to
getReply (or one of its variations) with ^C.

getTermHeight getTermHeight

Returns the height of the user’s terminal.

command shell (version 3.1) September 5, 2017 Page 29

getTermWidth getTermWidth

Returns the width of the user’s terminal.

getWD getWD

Returns the current working directory.

html2text html2text html

Returns html with character codes converted to human-readable text.

htmlGetSelected htmlGetSelected tree, name

Returns the text for a selected option. Example:
my $form = htmlTagId($tree,"form","request”);
my $selected = htmlGetSelected($form,"rate");

htmlParse htmlParse content

Returns a parsed tree for the content. Example:
my $RESP = httpGet("http://www.example.com/index.html")
$RESP->{tree} = htmlParse($RESP);

htmlParseFile htmlParseFile filename

Returns a parsed tree for the contents of a file.

htmlTag htmlTag content, tag

Searches through content for a matching tag. The content can be the response to
a request (such as httpGet), a parsed Tree (such as returned by htmlParse), the
result of a previous search request (such as htmlTag) or raw HTML content.
This call is functionally equivalent to:

$tree->look_down('_tag',$tag);

htmlTagClass htmlTagClass content, tag, id

Searches through content for a matching tag with a class of id. This call is
functionally equivalent to:

$tree->look_down('_tag',$tag,'class',$id);

htmlTagId htmlTagId content, tag, id

Searches through content for a matching tag with an ID of id. This call is
functionally equivalent to:

$tree->look_down('_tag',$tag,'id',$id);

httpAddHeader httpAddHeader name, value

Adds a header for the next request.

command shell (version 3.1) September 5, 2017 Page 30

httpGet httpGet url

Sends GET request for url and returns reference to httpResponse. Example:
my $RESP = httpGet("http://www.example.com/index.html");

httpHead httpHead url

Sends HEAD request for url and returns reference to httpResponse. Example:
my $RESP = httpHead("http://www.example.com/index.html");

httpPost httpPost url, content

Posts content to url and returns reference to httpResponse. If content is an array,
it will be processed by httpPostContent. Example:

my $RESP = httpPost("http://www.example.com/index.php",
 $content);

httpPostContent httpPostContent name => value, …

Formats name/value pairs to pass as content to a POST request. The values are
sanitized replacing the characters space, ‘%’, ‘&’, and ‘=’ with %20, %25, %26,
and %3D respectively. Example:

httpPostContent([
 name => "Tony",
 company => "Lewis & Sons",
 motto => "Unity=Power"])

returns "name=Tony&company=Lewis%20%26%20Sons&motto=Unity%3DPower".

httpSetCookie httpSetCookie key, value, path, domain, port, secure, maxage

Adds a cookie to the cookie jar for future requests.

initHelp initHelp name, short, command, help

Initializes help processing of the command shell with a descriptive name, a short
form of the name, a phrase to describe a single command, and the name of the
help routine (typically "help").

Note: This call is automatically created by the customization script.

importData importData filehandle

Imports data from an open file.

importFromFile importFromFile filename

Imports data previously exported by exportData, exportToFile, or exportStorage
from filename. Example:

importFromFile("/path/to/exportFile");

If filename has a .tgz extension, the file will be decompressed to a temporary file
and the data will be imported from the temporary file.

command shell (version 3.1) September 5, 2017 Page 31

loadData loadData path container …

Load data previously stored in path by storeData into one or more containers. A
container will be an an array, a hash, or a scalar. The quantity and data types of
the containers must match the call to storeData.

loadLibrary loadLibrary name, reason

Loads a Perl library and records the reason it was loaded.

loadNamedData loadNamedData path [container …]

Load named data previously stored in path by storeNamedData into one or more
containers.

makeCopy makeCopy \@A, \@B
makeCopy \%A, \%B

Makes a safe copy of B in A. Any references to data in the copy will point to an
object of the same type and value, but changes in the copy will not affect the
original.

max max number, …

Returns the largest of a group of numbers.

min min number, …

Returns the smallest of a group of numbers.

networkExit networkExit

Prepares the network support routines for exiting the command shell.

networkInit networkInit name, value, …

Initializes the network support routines. Accepts the following name/value pairs
to control network processing and to optionally set information passed to a
remote site in a request:

accept Sets value for the HTTP Accept header (default: */*)

accept-lang Sets the value for the HTTP Accept-Language header (default:
en-us)

block Array of domain names that are blocked; requests for those
domains will automatically fail with a status of 500

base Default base

redirect Set to 0 to suppress automatic processing of redirect requests

referer Sets value for the HTTP Referer header for the first request

user-agent Sets value for the HTTP User-Agent header (default: Mozilla)

command shell (version 3.1) September 5, 2017 Page 32

Any other name/value pairs will be passed to LWP::UserAgent.

Note that setting the referer header will automatically change to the last URL
processed for subsequent requests.

pagedFile pagedFile filename

Prints contents of a file one page at a time.

pagedOutput pagedOutput \@text
pagedOutput @text
pagedOutput filehandle

Prints output to screen one page at a time.

pagedTable pagedTable rows

Formats and displays a table (see showTable) one page at a time.

pathFull pathFull filename

Returns the fully-qualified path to filename. If the filename is a link, the result
will be the fully-qualified path to the target of the link.

pathToSystem pathToSystem filename

Returns filename with escaped character sequences safe to pass to operating
system commands.

relativeURL relativeURL base, [parent], url

Returns url relative to the base and the parent page.

resp resp [\%RESP]

Prints contents of the HTTP response.

safeString safeString text

Returns copy of text safe to pass to print. Result is either an ASCII or UTF-8
string with no wide characters.

safeSubstr safeSubstr text,pos[,n]

Returns a substring n characters long starting at pos treating UTF-8 character
sequences as a single character.

setDebugFlag setDebugFlag flag, value

Sets the named debug flag to value.

setHistory setHistory filename

Sets the file for saving command history between invocations of the command
shell.

Note: This call is automatically created by the customization script.

command shell (version 3.1) September 5, 2017 Page 33

setOptionalUndef setOptionalUndef setting

Globally sets the behavior for the value of unspecified optional command
arguments. If setting is non-zero, undefined command arguments will return
undef, otherwise they return a null string or zero (depending on the type of the
argument).

showTable showTable rows

Formats and displays a table. Each row of output will take one of two forms:
"<field>\t<field>\t…"
"\f<text>"

A row that begins with "\f" will span the entire row; all other rows will contain
the fields separated by tabs aligned into columns. By default, each field will be
left aligned and as wide as necessary to fit the field.

Formatting can be fine-tuned by passing instructions as the first line. The
formatting line must start with "\a" and contain information for each column
formatted roughly as %[[n.m][,inst...]] where n is the minimum width, m is the
precision (affects only floating-point numbers), and inst may be one or more of
the following:

center Center the text
chop:w Chop the field at <w> characters
indent If text exceeds the terminal width, indent the wrapped text to this

column
comma Add comma separator to numeric values
left Left justify the text (default unless <m> is specified)
right Right justify the text (default if <m> is specified)
tab:n Number of spaces following this column (default: 1)
wrap:w If this column exceeds <w> characters, display the text as a full line

and wrap the remaining columns to the next line

A field with no special instructions is indicated by '%'

Example Fields

%5 Formats 'abc' as 'abc '
%5.2 Formats pi as ' 3.14'
%8,center Formats 'abcd' as ' abcd '
%8,right Formats 'abcd' as ' abcd'
%chop:7 Formats 'abcdefghijk' as 'abcdefg'
%comma Formats 12345 as '12,345'

command shell (version 3.1) September 5, 2017 Page 34

Example
showTable("\a%%5,right%chop:7","1.\tabc\texplanation",
 "2.\twxyz\tshort")

produces:
1. abc explana
2. wxyz short

singPlural singPlural n, singular, plural

Returns the singular form if n is 1; otherwise returns the plural form. The form
may include "%d", which will be replaced by n. Examples:

singPlural($n,"just 1 file","many files")
singPlural($n,"%d file","%d files")

sortAlpha sortAlpha @array

Returns array sorted alphabetically.

sortAlphaIC sortAlphaIC @array

Returns array sorted alphabetically without regard to case.

storeData storeData path, container, …

Store one or more containers in path. A container will be an array, a hash, or a
scalar. For example:

storeData(".data", \@users, \%INFO, \$date);

storeNamedData storeNamedData path, name, container, …

Store one or more named containers in path. A container will be an array, a
hash, or a scalar. If the names are valid Perl variable names (as in the second
example below), the data can be reloaded into those variables by
loadNamedData without specifying the containers. Examples:

storeNamedData(".cs",
 config => \%CONFIG,
 list => \@list,
 info => \$info);
storeNamedData(".cs",
 "\%CONFIG", \%CONFIG,
 "\@list", \@list,
 "\$info", \$info);

testString testString text

Tests contents of string. Returns value from 0 to 7 where 1 bit
is on if text contains ASCII characters, 2 bit is on if text
contains UTF-8 characters, and 4 bit is on if text contains wide
characters.

command shell (version 3.1) September 5, 2017 Page 35

timeDiff timeDiff a, b

Returns a string describing the time that has elapsed (or will elapse) between a
and b.

toc toc path, [pageLength, pageWidth]
toc \@path, [pageLength, pageWidth]

Generates a Table of Contents for a source file (or a collection of source files).

trueLength trueLength text

Returns the number of UTF-8 characters in text.

unknownCommand unknownCommand

Prints “What?” in red. You may use this routine as a mode error routine.

wrapLine wrapLine text

Word wraps a line of output so that it will fit on the terminal.

wrapText wrapText text, width

Word wraps a line of output so that it will fit in the specified width.

xmlExit xmlExit

Prepares the XML support routines for exiting the command shell.

xmlInit xmlInit

Initializes the XML support routines.

yesNo yesNo prompt

Prompts the user for a yes/no response; returns 1 for yes, 0 for no, or undef if the
user did not supply a response.

command shell (version 3.1) September 5, 2017 Page 36

Support Variables

The scalar $debug is available to control debugging output; it will have a value between 0 and 3
inclusive and can be changed at runtime using the debug command.

The hash %COLOR is available for use by user-developed code to colorize terminal output. For example:

print "$COLOR{blue}This text will appear in blue.$COLOR{reset}\n";

The hash %VT100 is available for use by user-developed code to control a VT100 compatible terminal.
For example:

print $VT100{nl};

Using the support routines in other scripts

The file cs_fn.pl contains many support routines and it has been written so that it can be added to scripts
other than the command shell. (For example, customize.pl requires it.) To use these routines, simply add
the following to your code:

require "cs_fn.pl";

Note that any routines that begin with “cs_” are not intended to be called directly by your code. If you
find a useful “cs_” routine, you should create a wrapper function in cs_fn.pl to isolate your command
shell from future script changes.

command shell (version 3.1) September 5, 2017 Page 37

Implementation Details

The launch file (xx.pl) has special code to load files from the directory where it is located (even when
files in that directory would not ordinarily be loaded by Perl. In addition, the command shell will look
for a directory named “lib” and add it to the Perl include array. It will add the first match from the
following list:

• a directory specified in the environment variable named “lib”
• a directory named lib in the current working directory (./lib)
• a directory named lib in the user’s home directory (~/lib)

User commands are read using a variation of Term::ReadLine. The command shell will use the first
library found in the following list:

• Term::ReadLine::Gnu
• Term::ReadLine::Perl
• Term::ReadLine

command shell (version 3.1) September 5, 2017 Page 38

Customization

The customization script will ask you a series of questions and will create a customized command shell
based on the responses. For most questions a default response will be displayed within brackets, e.g.,
[Sample]. If you want to accept the default answer, simply press the [Enter] or [Return] key on your
keyboard. You can jump to a previously encountered step by entering :# as your reply to any question.
For example, from step 6, you can enter :2 to jump back to step 2 and enter a new short name and then
enter :6 to return to step 6.

1. Descriptive Name

Prompt What will you call you command shell?

Give your command shell a descriptive name. Choose something that describes the
function(s) that the shell implements. You might want to use initial caps in the
descriptive name, e.g., “Fancy Command Shell”.

Usage • Comment block at the start of each file.
• Copyright notice
• Output of help command

2. Short Name

Prompt What is the short form of the name?

Choose a short form of the descriptive name. This will typically be a single word
and should not be capitalized.

Usage • Output of help command

3. Command Description

Prompt What is the phrase that describes one of your commands?

Choose a phrase to describe your commands. This is typically the short name
preceded by an article, e.g., “a fancy” or “an installer”.

Usage • Output of help command

4. Help Command

Prompt What command will users enter for assistance with commands?

Enter the name of the internal help command, e.g., “help”.

Usage • Name of the help command

command shell (version 3.1) September 5, 2017 Page 39

5. Help Group

Prompt What help group will the Short Name commands be assigned to?

Commands within the shell are grouped into help groups; you may define multiple
help groups in your shell, but enter the main help group now.

Usage • Name of the help group

6. Command History

Prompt Where will the command history be stored?

The command shell remembers the commands that the user enters and stores the
last 500 commands. Enter the location of the file where the command history will
be stored.

Usage • Command history file location

7. Command Mode

Prompt What will your mode be called?

Commands within the shell are grouped into modes. (Built-in modes include cgi,
perl, and system.) You may define multiple modes

Usage • Command mode for your commands

8. Command Prefix

Prompt What letter will be the prefix for commands in the "Command Mode" mode?

Choose a single letter of the alphabet to be used as a prefix for your commands
from another mode. Note that ‘c’ is reserved for the cgi mode and ‘p’ is reserved
for the Perl mode.

For example, if you choose ‘m’, , a user can enter m!test to run your ‘test’
command from another mode.

Usage • Prefix for your commands

command shell (version 3.1) September 5, 2017 Page 40

9. File Prefix

Prompt What prefix would you like to use for the files?

There are a total of three files that must share the same prefix. For example, if your
prefix is ‘xx’, the following files are created:

xx.pl This is the main shell that users will invoke.
xx_defs.pl This file defines the inner workings and commands.
xx_impl.pl This file implements your commands.

Of course, you can add other files as necessary, but that is the default set. You
must use a prefix other than “cs” so that your files do not get accidentally
overwritten when you upgrade to a later version of the command shell.

Usage • Prefix of generated source file names

10. Author Name

Prompt Who is the author of this command shell?

Enter your name (or the name of your organization).

Usage • Name of the command’s author

11. Author Email

Prompt What is the author's email address?

Enter your email address.

Usage • Email address of the command’s author

12. Version Number

Prompt What is the initial version number?

Enter the initial version number; for example: 0.1 or 1.0.

Usage • Version number of the initial version

13. Description

Prompt The Descriptive Name provides a set of commands to...

Enter a command description. This description will appear in a comment block of
the generated source files and in the output of the ‘about’ command.

Usage • A description of the command

command shell (version 3.1) September 5, 2017 Page 41

14. Copyright Notice

Prompt What is your copyright notice?

Enter a copyright notice to appear in the generated source files. You can choose a
notice of the form “Copyright 20xx Author Name” by entering ‘-’. The copyright
notice will appear in a comment block of the generated source files and in the
output of the ‘about’ command.

Usage • Copyright notice for the command

15. Source Directory

Prompt Do you want to use the default directory?

A new directory can to be created to hold your new command files. By default this
new directory will have the same name as the file prefix specified in step 9.

Usage • Directory where generated source files will be created

Example Customization

The following is an example of running the customization script. In this example, “[Enter]” means to
press the Enter or Return key to accept the default response.

This utility provides a command shell into which you can add your own commands.

To get started, answer a few questions about your the inner workings of your
command shell.

1. You need to give your command shell a name (example: "Fancy Command Shell")
What will you call you command shell? [Sample] Fancy Command Shell

2. You also need a short form of the name (example: "fancy")
What is the short form of the name? [fancy] [Enter]

3. You need a phrase that describes a single one of your commands (for example,
"a fancy")
What is the phrase that describes one of your commands? [a fancy] [Enter]

4. You may give the 'help' command a different name.
What command will users enter for assistance with commands? [help] [Enter]

5. Internally your commands will be assigned to a help group (example: "fcs").
What help group will the fancy commands be assigned to? [fcs] [Enter]

command shell (version 3.1) September 5, 2017 Page 42

6. In order for the command history to be saved between runs of your shell, you
must specify a file name or path. If you specify a file name, the history will be
stored in the same directory as the command shell. You might also store it in the
user's home directory by preceding the file name with ~/
Where will the command history be stored? [.fcs_history] [Enter]

7. Within the shell, your commands will be collected into a separate mode.
What will your mode be called? [fcs] [Enter]

8. You need to specify a prefix to execute commands in the 'fcs' mode from
another mode. Note that 'p' is reserved and 'c', 'n', and 'x' are used by optional
command shell support routines.
What letter will be the prefix for commands in the "fcs" mode? [f] [Enter]

That takes care of the inner workings. Now let's move on to the files that will
be created. There are total of three files that must share the same prefix.
The names are of the form:
 xx.pl This is the main shell that users will invoke.
 xx_defs.pl This file defines the inner workings and commands.
 xx_impl.pl This file implements your commands.

Of course, you can add other files as necessary, but that is the default set. You
must use a prefix other than "cs" so that your files do not get accidentally
overwritten when you upgrade to a later version of the command shell.

9. What prefix would you like to use for the files?
What prefix will be used for your files? [fcs] [Enter]

10. What author name do you want to appear in the source?
Who is the author of this command shell? [] Your Name

11. What is the author's email address?
What is the author's email address? [] Your Email

12. What initial version number do you want to appear in the source?
What is the initial version number? [] 1.0

13. Now describe what the command shell does. Complete the following sentence:
The Fancy Command Shell provides a set of commands to... [] do something fancy

14. Enter any copyright notice you want included (leave blank for none).
Example: Copyright 2017 Your Name <Your Email>
Enter '-' if that example is in fact how you want your copyright to read.
What is your copyright notice? [] –

command shell (version 3.1) September 5, 2017 Page 43

15. A new directory can to be created to hold your new command files. By default
this new directory will be:
 /Users/Tony/bin/cs/fcs
If you want to create that directory, reply 'yes'. If you want to leave the files
in the current directory, reply 'no'. Otherwise, reply with the new directory.
Do you want to use the default directory? [yes] [Enter]

That is all the information needed.
Are you ready to generate your command shell? [yes] [Enter]

Your command shell has been created. Run your script using the following command:

./fcs.pl

Inside the script, enter the following commands:
about
test
help

If the output of those commands is satisfactory, start adding your own
commands. You may edit or delete the "test" command. If you are not satisfied
with the output, edit ./fcs_defs.pl or ./fcs_impl.pl.

Send feedback on the command shell and this customization script to
tlewis@exelana.com.

Example Test Run

The following is an example of running the command shell immediately following the customization
above.

./fcs.pl
fcs> about
Fancy Command Shell
This command will do something fancy.

Version 1.0
Written by Tony Lewis.
Copyright 2017 Tony Lewis <tlewis@exelana.com>
Updated: August 20, 2017 at 8:17 PM

Built on command shell version 3.1 (2017-08-30 08:15:09).
For more information about the command shell, visit
http://www.exelana.com/techie/perl/cs.html
fcs> test
Hello, world!
fcs> test Tony
Hello, Tony!

command shell (version 3.1) September 5, 2017 Page 44

fcs> help
test [name] Initial testing command

f!command Execute a fancy <command>
!command Execute a system <command>
p!statement Execute a Perl <statement>

fcs Process in fancy mode
system Process in system command mode
perl Process in Perl mode

edit file Edit <file> with _emacs
editlib name Edit the system library <name> with _emacs
about Display information about this script
built Display information about the last call to showTable
cd Change the working directory
findlib name Display where <name> appears in the system libraries
pwd Print the working directory
save path Save last output in <path>
reload Reload this program
quit Exit this program
fcs> quit

command shell (version 3.1) September 5, 2017 Page 45

Subroutine Index

Support Routines
Routine Page Line File
abort 31 1556 cs_fn.pl
addAbout 29 1496 cs.pl
addAlias 29 1507 cs.pl
addCGI 2 61 cs_cgi.pl
addCommand 30 1527 cs.pl
addDebugFlag 26 1325 cs_fn.pl
addHelp 31 1585 cs.pl
addHelpGroup 32 1595 cs.pl
addMode 32 1605 cs.pl
array 26 1340 cs_fn.pl
cgiConnect 2 81 cs_cgi.pl
cgiExecute 2 93 cs_cgi.pl
cgiExit 9 431 cs_cgi.pl
cgiGetFile 2 103 cs_cgi.pl
cgiInit 9 423 cs_cgi.pl
cgiPutFile 3 118 cs_cgi.pl
chopTable 46 2313 cs_fn.pl
codeToFile 40 2049 cs_fn.pl
codeToLocation 40 2060 cs_fn.pl
codeToName 40 2071 cs_fn.pl
collectCode 41 2090 cs_fn.pl
comma 46 2331 cs_fn.pl
compare 13 601 cs_fn.pl
complain 31 1565 cs_fn.pl
complainTrace 31 1578 cs_fn.pl
copyArray 13 652 cs_fn.pl
copyHash 14 665 cs_fn.pl
csv 13 702 cs_fn.pl
csvInit 14 679 cs_fn.pl
dbDelete 2 102 cs_db.pl
dbDo 3 127 cs_db.pl
dbExit 15 747 cs_db.pl
dbFetch1Hash 3 156 cs_db.pl
dbFetchArray 3 167 cs_db.pl
dbFetchHash 4 189 cs_db.pl
dbInit 15 731 cs_db.pl
dbInsertRow 5 216 cs_db.pl
dbIsOpen 6 267 cs_db.pl
dbIsRunning 6 279 cs_db.pl
dbOpen 6 289 cs_db.pl
dbPseudoField 7 327 cs_db.pl
dbQuote 7 338 cs_db.pl
dbSelect 8 355 cs_db.pl
dbSelectHash 8 386 cs_db.pl
dbShowQueryResults 9 406 cs_db.pl
dbTableHash 9 435 cs_db.pl
dbUpdateHashes 9 453 cs_db.pl
debug 26 1361 cs_fn.pl
debugColor 26 1376 cs_fn.pl

command shell (version 3.1) September 5, 2017 Page 46

Routine Page Line File
debugger 67 3393 cs_fn.pl
displayLength 54 2798 cs_fn.pl
doDir 33 1665 cs_fn.pl
dumpVar 27 1390 cs_fn.pl
dumpVarValue 30 1517 cs_fn.pl
exportData 18 987 cs_fn.pl
exportStorage 18 951 cs_fn.pl
exportToFile 17 923 cs_fn.pl
findLibrary 44 2234 cs_fn.pl
first 28 1412 cs_fn.pl
fmtDate 24 1230 cs_fn.pl
getDebugFlag 28 1438 cs_fn.pl
getFileList 37 1910 cs_fn.pl
getHome 37 1960 cs_fn.pl
getMainMode 32 1638 cs.pl
getNumber 59 3016 cs_fn.pl
getNumberList 59 3037 cs_fn.pl
getOS 42 2135 cs_fn.pl
getPath 38 1970 cs_fn.pl
getReply 60 3098 cs_fn.pl
getReplyInt 61 3175 cs_fn.pl
getTermHeight 42 2143 cs_fn.pl
getTermWidth 42 2151 cs_fn.pl
getWD 38 1996 cs_fn.pl
html2text 3 111 cs_network.pl
htmlGetSelected 3 126 cs_network.pl
htmlParse 3 148 cs_network.pl
htmlParseFile 4 173 cs_network.pl
htmlTag 4 190 cs_network.pl
htmlTagClass 5 210 cs_network.pl
htmlTagId 5 219 cs_network.pl
httpAddHeader 5 228 cs_network.pl
httpGet 6 237 cs_network.pl
httpHead 6 249 cs_network.pl
httpPost 6 261 cs_network.pl
httpPostContent 6 274 cs_network.pl
httpSetCookie 6 300 cs_network.pl
importData 19 1040 cs_fn.pl
importFromFile 19 1008 cs_fn.pl
initHelp 33 1668 cs.pl
loadData 9 413 cs_fn.pl
loadLibrary 44 2254 cs_fn.pl
loadNamedData 10 459 cs_fn.pl
makeCopy 15 799 cs_fn.pl
max 45 2291 cs_fn.pl
min 45 2301 cs_fn.pl
networkExit 15 742 cs_network.pl
networkInit 15 724 cs_network.pl
pagedFile 46 2342 cs_fn.pl
pagedOutput 47 2356 cs_fn.pl
pagedTable 47 2416 cs_fn.pl
pathFull 38 2004 cs_fn.pl
pathNormalize 38 2020 cs_fn.pl

command shell (version 3.1) September 5, 2017 Page 47

Routine Page Line File
pathToSystem 39 2031 cs_fn.pl
relativeURL 6 310 cs_network.pl
resp 7 324 cs_network.pl
safeString 54 2808 cs_fn.pl
safeSubstr 54 2842 cs_fn.pl
setDebugFlag 28 1447 cs_fn.pl
setHistory 35 1869 cs.pl
setOptionalUndef 37 1904 cs.pl
showTable 48 2464 cs_fn.pl
singPlural 55 2875 cs_fn.pl
sortAlpha 56 2886 cs_fn.pl
sortAlphaIC 56 2894 cs_fn.pl
storeData 11 505 cs_fn.pl
storeNamedData 11 534 cs_fn.pl
testString 56 2909 cs_fn.pl
timeDiff 25 1291 cs_fn.pl
toc 43 2160 cs_fn.pl
trueLength 57 2935 cs_fn.pl
unknownCommand 31 1590 cs_fn.pl
wrapLine 57 2961 cs_fn.pl
wrapText 57 2970 cs_fn.pl
xmlExit 5 221 cs_xml.pl
xmlInit 5 213 cs_xml.pl
yesNo 61 3183 cs_fn.pl

User Commands
Command Routine Page Line File
about cs_cmdAbout 14 704 cs.pl
built cs_cmdBuilt 15 723 cs.pl
cd cs_cmdCd 15 805 cs.pl
child xmlCmdChild 2 46 cs_xml.pl
cookie netCmdCookie 11 496 cs_network.pl
debug cs_cmdDebug 15 832 cs.pl
doc xmlCmdDoc 2 66 cs_xml.pl
dump cs_cmdDump 17 910 cs.pl
dump xmlCmdDump 2 81 cs_xml.pl
edit cs_cmdEdit 21 1183 cs.pl
editlib cs_cmdEditLib 23 1205 cs.pl
exit cs_cmdQuit 26 1328 cs.pl
findlib cs_cmdFindLib 24 1238 cs.pl
get cgiCmdGet 6 258 cs_cgi.pl
get netCmdGet 12 542 cs_network.pl
head netCmdHead 12 564 cs_network.pl
help cs_cmdHelp 24 1249 cs.pl
info dbCmdInfo 13 649 cs_db.pl
info xmlCmdInfo 2 87 cs_xml.pl
log cgiCmdLog 9 416 cs_cgi.pl
lookdown netCmdLookDown 12 582 cs_network.pl
net netCmdNet 13 605 cs_network.pl
node xmlCmdNode 3 108 cs_xml.pl
open dbCmdOpen 14 672 cs_db.pl
open xmlCmdOpen 2 96 cs_xml.pl
parent xmlCmdParent 3 137 cs_xml.pl

command shell (version 3.1) September 5, 2017 Page 48

Command Routine Page Line File
ping netCmdPing 14 666 cs_network.pl
pop xmlCmdPop 3 143 cs_xml.pl
push xmlCmdPush 3 150 cs_xml.pl
put cgiCmdPut 6 317 cs_cgi.pl
pwd cs_cmdPwd 25 1313 cs.pl
query dbCmdQuery 13 659 cs_db.pl
quit cs_cmdQuit 26 1328 cs.pl
reload cs_cmdReload 26 1336 cs.pl
save cs_cmdSave 28 1440 cs.pl
select cgiCmdSelect 8 391 cs_cgi.pl
select netCmdSelect 14 689 cs_network.pl
shift xmlCmdShift 3 156 cs_xml.pl
table dbCmdTable 14 680 cs_db.pl
tables dbCmdTables 15 719 cs_db.pl
text xmlCmdText 3 163 cs_xml.pl
top netCmdTop 14 702 cs_network.pl
top xmlCmdTop 3 169 cs_xml.pl
tree xmlCmdTree 4 175 cs_xml.pl
unshift xmlCmdUnshift 4 184 cs_xml.pl
view netCmdView 14 712 cs_network.pl

Internal Support Routines
Routine Page Line File
_charBytes 57 2985 cs_fn.pl
_compare 13 609 cs_fn.pl
_csv 15 720 cs_fn.pl
_debuggerStack 68 3469 cs_fn.pl
_debuggerWhere 68 3478 cs_fn.pl
_doDir 34 1768 cs_fn.pl
_xmlDump 4 198 cs_xml.pl
cs_addInternal 31 1571 cs.pl
cs_buildTableOutput 49 2480 cs_fn.pl
cs_cgiCheckCode 3 147 cs_cgi.pl
cs_cgiConfigure 9 438 cs_cgi.pl
cs_cgiConnect 3 132 cs_cgi.pl
cs_cgiRequest 4 221 cs_cgi.pl
cs_checkTree 8 346 cs_network.pl
cs_cmdExit 24 1230 cs.pl
cs_commandHelp 25 1290 cs.pl
cs_copyREF 16 860 cs_fn.pl
cs_db2Date 11 491 cs_db.pl
cs_db2Time 11 502 cs_db.pl
cs_dbConfigure 15 754 cs_db.pl
cs_dbDebugArg 11 510 cs_db.pl
cs_dbHashFromDB 11 519 cs_db.pl
cs_dbHashValue2db 12 538 cs_db.pl
cs_dbQuery 12 583 cs_db.pl
cs_dbValueFromDB 13 610 cs_db.pl
cs_defineInternal 34 1753 cs.pl
cs_doCGI 3 164 cs_cgi.pl
cs_doEvalWithInterrupt 62 3193 cs_fn.pl
cs_doLoadItem 12 561 cs_fn.pl
cs_doLoadNamedData 10 476 cs_fn.pl

command shell (version 3.1) September 5, 2017 Page 49

Routine Page Line File
cs_doPerl 63 3223 cs_fn.pl
cs_doPerlEvaluator 62 3216 cs_fn.pl
cs_doPerlPrint 66 3372 cs_fn.pl
cs_doPrefix 8 389 cs.pl
cs_doReload 26 1347 cs.pl
cs_doSystem 14 686 cs.pl
cs_dumpVar 29 1461 cs_fn.pl
cs_emitAcceptEncoding 8 354 cs_network.pl
cs_execute 7 318 cs.pl
cs_execute_cmd 8 324 cs.pl
cs_execute_mode 7 336 cs.pl
cs_exportData 20 1053 cs_fn.pl
cs_exportREF 21 1128 cs_fn.pl
cs_exportValue 21 1162 cs_fn.pl
cs_findPerl 37 1959 cs.pl
cs_fmtDebug 16 898 cs.pl
cs_formatHash 38 2008 cs.pl
cs_getPrompt 35 1854 cs.pl
cs_httpAcceptEncoding 8 380 cs_network.pl
cs_httpResponse 9 397 cs_network.pl
cs_httpURL 10 462 cs_network.pl
cs_importData 21 1175 cs_fn.pl
cs_importStorage 22 1189 cs_fn.pl
cs_initMiscHelp 35 1825 cs.pl
cs_libToPM 44 2278 cs_fn.pl
cs_loadAbort 12 583 cs_fn.pl
cs_loadTerm 71 3561 cs_fn.pl
cs_localExit 38 1998 cs.pl
cs_mapColor 29 1459 cs.pl
cs_networkConfigure 15 749 cs_network.pl
cs_outputField 52 2716 cs_fn.pl
cs_params 39 2038 cs.pl
cs_parseInput 11 498 cs.pl
cs_parseSyntax 10 423 cs.pl
cs_postInit 33 1693 cs.pl
cs_preInit 32 1645 cs.pl
cs_prepareToExit 40 2045 cs.pl
cs_printHash 40 2031 cs.pl
cs_printMakeCopy 16 888 cs_fn.pl
cs_reloadDebug 6 305 cs.pl
cs_showConnection 6 244 cs_cgi.pl
cs_showTable 49 2472 cs_fn.pl
cs_sigInt 37 1912 cs.pl
cs_sortEncoding 10 480 cs_network.pl
cs_switchMode 9 397 cs.pl
cs_termSize 71 3592 cs_fn.pl
cs_terminate 37 1936 cs.pl
cs_wrapLine 53 2741 cs_fn.pl
cs_xmlConfigure 6 228 cs_xml.pl
cs_xmlDump 4 192 cs_xml.pl

Version 3.1 http://www.exelana.com/techie/perl/cs.html September 5, 2017

Tony Lewis’ Command Shell (page 1)
User commands
about Displays information about the script.
cd path Change the working directory.
cgi Enter “cgi” mode to send commands to a server.
exit Return to main mode from cgi, perl or system mode
help [topic] Display information about available commands
perl Enter “perl” mode to evaluate Perl expression
pwd Print the current working directory.
quit Exit the command shell
system Enter “system” mode to enter operating system

commands.
Shell Developer commands
debug [level] Change the debugging level (options: off on 0 1 2 3)
dump [topic] Dump internal system structures

full | <mode> | all | commands | help | lib
edit file Edit <file>
editlib lib Edit system library <lib>
findlib lib Find system library <lib>
reload Reload the script
storage file Examine a file created by storeData
addCommand syntax argument
F / f file path
I / i integer
S / s string
* unclaimed
-B / -b Boolean switch (on / off)
-I / -i integer switch (required / optional)
-S / -s string switch (required / optional)
Example: Fss-b-I:--silent:--wait

Directory Traversal
doDir (".",0,sub { print join("/",@_),"\n" })
doDir (".",1,
 [accept => "f",
 run => sub { print "file: ",join("/",@_),"\n" }])
doDir (".",1,
 [reject => "dl",
 run => sub { print "file: ",join("/",@_),"\n" }])
doDir (dir => ".",
 walk => 1,
 accept => qr/\.txt$/,
 reject => qr/^foo/,
 run => \&processText,
 data => \%TEXT)
doDir (dir => ".",
 walk => 1,
 [accept => qr/\.txt$/,
 run => sub { print "Text: ",join("/",@_),"\n" }],
 [accept => qr/\.pl$/,
 run => sub { print "Perl: ",join("/",@_),"\n" }])
doDir (dir => $wd,
 walk => 1,
 [descend => sub { push @dirs, join("/",@_) }]);
User Input (allowed)

yes;no only accepts “yes” or “no”
yes=yes,y;no=no,n returns “yes” for “y” and “no” for “n”
yes=yes,y;!no=no,n null response means “no”

Initializing the Shell Command (xx_defs.pl)
addAbout(text) Add text to the about command
addAlias(command,alias,mode)

Adds an alias for command in mode
addCommand(name,syntax,routine,helpGroup,helpSyntax,helpText,mode)

Adds a command to mode
addHelp(group,command,description)

Add help message for command
addHelpGroup(name) Adds a help group to the shell
addMode(name,prefix,errorRoutine,help,prefix,prefixHelp)

Add a command mode
initHelp(name,short,description,help)

Initialize shell help
setHistory(filename) Sets the location of the command history file
setOptionalUndef(bool) If true, command arguments default to undef

CGI Interface (requires "cs_cgi.pl")
addCGI(name,url,user,password,wd,[alias)

Creates a CGI connection
cgiConnect(name,[password])

Connects to name with password
cgiExecute(command,silent)

Executes command on remote server
cgiGetFile(source,[destination],[chmod],[replace],[gzip],[silent])

Copies the source from the server
cgiPutFile(source,[destination],[chmod],[replace],[gzip],[silent])

Copies the local file source to the server

Data Management
loadData(path,containers) Load stored data into one or more containers

(array, hash or scalar); the quantity and data types of
containers must match the call to storeData

loadNamedData(path,[container,…])
Loads named data into one or more containers

storeData(path,containers) Store data from one or more containers in a file
storeNamedData(path,name,container,…)

Store named data from one or more containers in a file

Data Processing
compare(\@A,\@B) Compare two arrays
compare(\%A,\%B) Compare two hashes
copyArray(\@array) Creates a safe copy of array
copyHash(\%HASH) Creates a safe copy of HASH
csv($CSV) Returns a hash reference for the next line of data
csvInit(path) or csvInit(\@lines)
 Initializes CSV processing for path or lines.
exportData(fh,label,data) Exports data to an open file
exportStorage(storage,filename) Exports storage to filename
exportToFile(filename,label,data) Exports data to filename
importData(fh) Imports data from an open file
importFromFile(filename) Imports data from filename
makeCopy(\@A,\@B) Makes safe copy of @B in @A
makeCopy(\%A,\%B) Makes safe copy of %B in %A

Database Routines (requires "cs_db.pl")
dbDelete(table,[where]) Construtcs a DELETE statement
dbDo(sql) Processes SQL statement
dbFetch1Hash(sql) Processes SQL and returns a hash for first result
dbFetchArray(sql) Processes SQL and returns an array of results
dbFetchHash(sql) Processes SQL and returns array of hashes of results
dbInsertRow(table,\%HASH)

Inserts a row in table using values of HASH
dbIsOpen(name) Returns true if database name is open
dbIsRunning() Returns true if MySQL server is running
dbOpen(database,[user],[password])

Opens the database with permissions for user
dbPseudoField(table,field,key,type,default,null)

Defines a pseudo field added to hashes for table

http://www.exelana.com/techie/perl/cs.html�

Version 3.1 http://www.exelana.com/techie/perl/cs.html September 5, 2017

Tony Lewis’ Command Shell (page 2)
dbQuote(value) Quotes value to be used in SQL statement
dbSelect(fields,table,where,order)

Constructs a SELECT statement
dbSelectHash(table,\%HASH) Constructs SQL to retrieve from table
dbShowQueryResults([table],result) Prints the values of all rows in result
dbTableHash(table) Returnsa row in table
dbUpdateHashes(table,key,\%OLD,\%NEW)

Updates a row in table with changes from NEW

Date/Time Processing
fmtDate(fmt,tm,gmt) Formats the number of non-leap seconds since epoch
timeDiff(a,b) Describes elapsed time between two times

Date/Time Formatting
am either "am" or "pm" m single digit month
AM either "AM" or "PM" mm two digit month
d single digit day mmm short month name: Jan
dd two digit day mmmm long month name: January
ddd short weekday: Mon n single digit minute
dddd long weekday: Monday nn two digit minute
h onw digit 24-hour clock hour s single digit second
hh two digit 24-hour clock hour ss two digit second
hhh one digit 12-hour clock hour yy two digit year

Debugging
addDebugFlag(flag,value) Adds a named debug flag
array(\@array) Prints contents of array truncated to width of terminal.
debug(text,…) Prints debugging text to terminal
debugColor(color,source) Sets debugging color for source file
debugger(evaluator) Invokes the debugger
dumpVar(var,descend) Prints contents of var
first(%HASH) Prints contents of first key/value pair of HASH
getDebugFlag(flag) Returns the current setting for a named debug flag
getMainMode() Return the name of the main mode
resp($RESP) Prints contents of HTTP response
setDebugFlag(flag,value) Sets the named debug flag to value

Error Messages
abort(text) Print text (in red) and exit the program.
complain(text) Print text (in red)
complainTrace(text) Print text (in red) and a stack trace
unknownCommand Prints “What?” (in red)

File/Directory Processing
doDir(dir,walk,routine)
doDir(dir,walk,[rules])Traverse a directory and take designated actions on

appropriate objects.
getFileList([directory],match) Returns an array of files
getHome() Returns the user’s home directory
getPath(relPath) Returns the full path for a relative path
getWD() Returns the current working directory
pathFull(filename) Returns fullly qualified "/path/to/filename"
pathToSystem(filename) Returns filename with escaped characters

Formatted Output
chopTable(rows) Formats and displays a table (see “Formatted Tables”

below); output lines are chopped at the terminal width.
comma(value) Returns comma notated value
pagedFile(filename) Prints contents of file one page at a time
pagedOutput(text) Prints text to screen one page at a time
pagedTable(table) Formats table and prints results one page at a time
showTable(rows) Formats and prints a table

Formatted Tables
\a%%5.2%center%chop:7 %comma%right%wrap:45
\f<full line text>
<field>\t<field>\t…

HTML Content (requires "cs_network.pl")
html2text(html) Returns html converted to human-readable text
htmlGetSelected(tree,name) Returns text for selected option in tree
htmlParse(content) Returns a parsed tree for the content
htmlParseFile(filename) Returns a parsed tree for contents of filename
htmlTag(content,tag) Searches content for matching tag
htmlTagClass(content,tag,class) Searchs content for matching tag with class
htmlTagId(content,tag,id) Searches content for matching tag with ID

HTTP Requests (requires "cs_network.pl")
httpAddHeader(name,value) Adds a header to next request
httpGet(url) Sends GET request for url
httpHead(url) Sends HEAD requet for url
httpPost(url,content) Posts content to url
httpPostContent(content) Formats name/value pairs
httpSetCookie(key,value,path,domain,port,secure,maxage)

Adds a cookie to the cookie jar for future requests
relativeURL(base,[parent],url) Returns url relative to base and parent

Information
codeToFile(code) Returns defining file for code
codeToLocation(code) Returns “line # of file” for code
codeToName(code) Returns the name of code
collectCode(\%HASH,[ref,[prefix]])

Collects information about code from symbol table
getOS() Returns a string indicating the operating system; one of

cygwin, macosx, unix, or windows
getTermHeight() Returns the height of the user's terminal
getTermWidth() Returns the width of the user’s terminal
toc(path,[len],[width]) Returns TOC for a source file (or collection)

Library Management
findLibrary(name) Returns an array of paths to a system library (or undef)
loadLibrary(name) Loads a Perl library

Numeric Processing
max(a,b,…) Returns the largest of a group of numbers
smin(a,b,…) Returns the smallest of a group of numbers

String Processing
displayLength(text) Returns the number of chacters that will be displayed
safeString(text) Returns safe copy of text (no wide characters)
safeSubstr(text,pos,n) Returns a substring n characters long starting at pos
singPlural(n,singular,plural) Returns the singular form if n is 1; otherwise

returns the plural form.
sortAlpha(array) Returns array sorted alphabetically
sortAlphaIC(array) Returns array sorted alphabetically ignoring case
testString(text) Returns 1 bit: ASCII, 2 bit: UTF-8, 4 bit: wide
trueLength(text) Returns number of UTF-8 characters in text
wrapLine(text) Wraps a line of text so that it will fit on the terminal
wrapText(text,width) Wraps a line of text so that it will fit in the

specified width

User Input
getNumber(prompt,low,high) Prompts the user for input and returns the

result, which must be a number between low and high
inclusive.

getNumberList(prompt,low,high) Prompts the user for input and returns the
result(s), list of numbers between low and high

getReply(prompt,allowed,password) Prompts the user for input
getReplyInt() Returns a boolean indicating if the user interrupted the

most recent call to getReply
yesNo(prompt) Prompts the user for a yes/no response; returns boolean

http://www.exelana.com/techie/perl/cs.html�

