
C:\Users\Tony Lewis\AppData\Roaming\Microsoft\Word\STARTUP\FindEvents.dotm Page 1

C:\Users\Tony Lewis\AppData\Roaming\Microsoft\Word\STARTUP\FindEvents.dotm
Author: Tony Lewis
Last saved: July 28, 2012 by Tony Lewis
Macros in this template are Copyright © Tony Lewis <tlewis@exelana.com> 2012

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Macros Page 2

Macros
AutoExec LoadEventHandler 3 Load the find/replace event handler when the template is opened
AutoExit LoadEventHandler 3 Unload the find/replace event handler when the template is closed

LoadEventHandler Page 3

LoadEventHandler

Option Explicit

' ==
' Macros in this template are Copyright © Tony Lewis <tlewis@exelana.com> 2012
'
' This program is free software: you can redistribute it and/or modify it
' under the terms of the GNU General Public License as published by the
' Free Software Foundation, either version 3 of the License, or (at your
' option) any later version.

' ==
' Provide the event handler with access to the Windows 32 API
Private Declare Function EnumWindows Lib "user32" _

(ByVal lpEnumFunc As Long, ByVal lParam As Long) As Boolean
Private Declare Function GetCurrentProcessId Lib "kernel32" _

() As Long
Private Declare Function GetWindowText Lib "user32" Alias "GetWindowTextA" _

(ByVal hWnd As Long, ByVal lpString As String, ByVal cch As Long) As Long
Private Declare Function GetWindowTextLength Lib "user32" Alias "GetWindowTextLengthA" _

(ByVal hWnd As Long) As Long
Private Declare Function GetWindowThreadProcessId Lib "user32" _

(ByVal hWnd As Long, lpdwProcessId As Long) As Long

Private evHandler As eventHandler
Dim theCaption As String
Dim thePID As Long
Dim theHWnd As Long

' ==
' Load the find/replace event handler when the template is opened
Sub AutoExec()

Set evHandler = New eventHandler
End Sub

' Unload the find/replace event handler when the template is closed
Sub AutoExit()

Set evHandler = Nothing
End Sub

' ==
' Find a window with a specific caption
Function cbFindCaption(ByVal hWnd As Long, ByVal lParam As Long) As Boolean
Dim PID As Long
Dim textLen As Long
Dim windowText As String

GetWindowThreadProcessId hWnd, PID
If PID = thePID Then

textLen = GetWindowTextLength(hWnd)
windowText = Space(textLen)
GetWindowText hWnd, windowText, textLen + 1
If windowText = theCaption Then

theHWnd = hWnd
End If

End If
cbFindCaption = True

End Function

Public Function GetHWndFromCaption(caption As String) As Long
thePID = GetCurrentProcessId()
theHWnd = -1
theCaption = caption

LoadEventHandler Page 4

EnumWindows AddressOf cbFindCaption, ByVal 0&
GetHWndFromCaption = theHWnd

End Function

eventHandler Page 5

eventHandler

Option Explicit

' ==
' Event handler - captures changes to the selection caused by the
' Find and Replace dialog and adjusts the position of the result on the
' screen.
Private Type apiRect

left As Long
top As Long
right As Long
bottom As Long

End Type

Private Declare Function GetWindowRect Lib "user32" _
(ByVal hWnd As Long, lpRect As apiRect) As Long

Const debugEvents = False
Private WithEvents app As Word.Application
Private isMoving As Boolean
Private ptHeight As Long
Private ptLeft As Long
Private ptTop As Long
Private ptWidth As Long

Private Sub app_WindowSelectionChange(ByVal Sel As Selection)
Dim hWndFind As Long
Dim rect As apiRect
Dim rng As Range

If isMoving Then Exit Sub
hWndFind = GetHWndFromCaption("Find and Replace")
' If the Find and Replace dialog is not found, then don't reposition the text on the screen
If hWndFind = -1 Then Exit Sub

If debugEvents Then MsgBox "SelectionChange: scroll surrounding paragraphs into view."
isMoving = True
If Selection.StoryType = wdTextFrameStory Then

' Try to fit the entire text box on the visible part of the screen
ScrollRange hWndFind, Selection.ShapeRange(1).TextFrame.TextRange
' but, if it doesn't fit then scroll the selection onto the screen
Set rng = Selection.Range
ActiveWindow.ScrollIntoView rng, True

ElseIf Selection.StoryType = wdEndnotesStory _
 Or Selection.StoryType = wdFootnotesStory Then

GetWindowRect hWndFind, rect
Set rng = Selection.Range
If RangeAbove(rect, rng) Then

' Make sure the selection is below the Find/Replace dialog
ActiveWindow.SmallScroll up:=5

End If

Else
' Try to get the previous and next paragraphs on the screen
Set rng = Selection.Range
Selection.SetRange rng.Start, rng.Start
Selection.MoveUp Unit:=wdParagraph, Count:=IIf(Selection.Paragraphs(1).Range.Start < rng.Start, 2, 1)
ActiveWindow.ScrollIntoView Selection.Range, True
Selection.MoveDown Unit:=wdParagraph, Count:=2
Selection.SetRange Selection.Paragraphs(1).Range.End - 1, Selection.Paragraphs(1).Range.End - 1
Selection.MoveRight
ActiveWindow.ScrollIntoView Selection.Range, True
Selection.SetRange rng.Start, rng.End

eventHandler Page 6

ActiveWindow.ScrollIntoView Selection.Range, True
End If

' Finally, try to fit the selection in the visible part of the screen
ScrollRange hWndFind, rng
ActiveWindow.ScrollIntoView Selection.Range, True
isMoving = False

End Sub

Private Function RangeAbove(rect As apiRect, rng As Range) As Boolean
RangeAbove = False
ActiveWindow.GetPoint ptLeft, ptTop, ptWidth, ptHeight, rng
If ptTop + ptHeight < rect.bottom Then

RangeAbove = True
End If

End Function

Private Function RangeOverlaps(rect As apiRect, rng As Range) As Boolean
RangeOverlaps = False
ActiveWindow.GetPoint ptLeft, ptTop, ptWidth, ptHeight, rng
If (rect.top < ptTop And rect.bottom > ptTop _
 Or rect.top < ptTop + ptHeight And rect.bottom > ptTop + ptHeight) Then

RangeOverlaps = True
End If

End Function

Private Sub ScrollRange(hWnd As Long, rng As Range)
Dim rect As apiRect
Dim lastTop As Long
Dim overlaps As Boolean

ActiveWindow.ScrollIntoView rng, True
GetWindowRect hWnd, rect
lastTop = -1
Do

overlaps = False
If RangeOverlaps(rect, rng) Then

' Don't keep trying if the last attempt didn't make a difference
If lastTop <> ptTop Then

overlaps = True
ActiveWindow.SmallScroll up:=1

End If
End If
lastTop = ptTop

Loop Until Not overlaps
End Sub

Private Sub Class_Initialize()
If debugEvents Then MsgBox "Load event handler"
Set app = Word.Application
isMoving = False

End Sub

Private Sub Class_Terminate()
If debugEvents Then MsgBox "Unload event handler"
Set app = Nothing

End Sub

